The impact of climate change on lakes in Central Europe

Martin T. Dokulil

Contributors

- Katrin Teubner, Vienna, Austria
- Alfred Jagsch, Mondsee, Austria
- Ulrike Nickus, Innsbruck, Austria
- Rita Adrian, Berlin, Germany
- Dietmar Straile, Konstanz, Germany
- David Livingstone, Zürich, Switzerland
- Thomas Jankowski, Zürich, Switzerland
- Alois Herzig, Illmitz, Austria
- Judit Padisák, Veszprem, Hungary

EC-projects CLIME & REFLECT

Layout

- Setting the stage
- Describing climatic changes
- Defining the actors
- Indices (NAO, AO, MOI, RI)
- Impacts on temperature, stability and timing
- Regional coherence
- Chemical and biological effects
- Summary
- References

Central Europe

Climate change in progress

Pasterze and Großglockner Austria

www.gletscherarchiv.de © Gesellschaft für ökologische Forschung / Wolfgang Zängl

Climate Scenarios Central Europe

Change in summer air temperature (C) RCAO-E: A2 - C

Change in winter precipitation (%) RCAO-H: A2 - C

6

Δ.

2

0

-2

-4

-6

-8

60

40

20

0

-20

-40

-60

Change in winter precipitation (%) RCAO-E: A2 - C

Climate Diagrams

From Mühr (2006)

Temperature Anomalies, IPCC BP

Temperature increase is estimated to range between 2-4°C with higher winter temperatures and more marked increase in summer

From: Kromp-Kolb, H. & Formayer, H. (2001) - Austria Klimaänderungen in Bayern (1999) - Bavaria Beniston, M. (2004) - Switzerland

Changes in the pattern of precipitation may have an even greater impact than rising temperatures.

A 10% decline in precipitation in the Alps plus a 1-2°C rise in temperature could produce a 40-70% reduction in runoff. Ecological zones will tend to move uphill.

From: Unit on Climate Change (IUCC), UNEP, Switzerland

Perialpine Lakes

Location of lakes in Central Europe

Satellite image of Salzkammergut

Mattsee

Irrsee

Wallersee

Mondsee

Fuschisee

Wolfgangsee

Traunsee

Altausser L

Grundlsee

Hallstättersee

Images of lakes

Müggelsee

Zürichsee

Walensee

Lake	Country	Geographical Position	Altitude [m]	Area [km²]	Z _{max} [m]	Z _{avg} [m]	Volume [10 ⁶ m ³]	Тw [y]	Catchment area [km ²]
L. Constance, LC	A/CH/D	47.39N/09.18E	395.0	472.00	253.0	101.0	47,600	4.2	11890.0
Zürichsee, LZ	СН	47.20N/08.35E	406.0	67.00	140.0	49.0	29	1.2	1740
Walensee, WS	СН	47.10N/09.15E	419.0	24.00	151.0	105.0	25	1.4	1061.0
L. Geneva, LL	CH/F	46.27N/06.32E	372.0	582.00	309.0	152.0	89,000	11.4	7395.0
Mondsee, MO	Α	47.48N/13.24E	481.0	14.21	68.3	36.0	510	1.7	247.0
Attersee, AS	Α	47.48N/13.30E	469.2	45.90	170.6	84.2	3,945	7.0	463.5
Hallstättersee, HS	Α	47.36N/13.42E	508.0	8.58	125.2	64.9	557	0.5	646.5
Traunsee, TS	Α	47.53N/13.48E	422.0	25.60	191.0	89.7	2,302	1.0	1417.0

NAO vs. Met data

LST in Mondsee

NAO_{Winter} vs. Air & LST

From Livingstone & Dokulil (2001) L & O 46, 1220-1227

NAO_{Winter} vs. LST

OAW

GLW

MOI_{Winter} vs. LST & Ice cover

Lake	Ice	NAO	AO	MOI
Müggelsee	Duration	-0.762***	-0.612***	n.s.
	Ice-off	-0.609***	-0.504*	n.s.
Irrsee	Duration	-0.494***	-0.410***	n.s.
	Ice-off	-0.671***	-0.330*	n.s.
Mondsee	Duration	-0.570**	-0.443*	n.s.
	Ice-off	-0.724**	-0.774**	n.s.
Neusiedler See	Duration	-0.451*	n.s.	-0.503*
	Ice-off	-0.511**	-0.461*	-0.650**
Balaton	Duration	-0.261*	n.s.	-0.381*
	Ice-off	-0.528***	-0.323**	-0.486**

NAO vs Chl-a spring peak

On average, the chlorophyll-a spring peak has shifted earlier by about 48 days

Onset of stratification

data are detrended

Steinacker-N_{MAM}

Mondsee

Thermal stability

Regional Index (RI)

WEATHER PATTERNS

(according to Steinacker, 1991)

10 weather types:

-8 flow patterns (NW, N, NE, E, SE, S, SW, W): based on the prevailing air flow across the Central Eastern Alps

'High pressure' type(H): weak pressuregradient, wind velocity< 15 knots

- 'Variable' type days with a marked change of flow direction (generally due to frontal passage)

Regional Index (RI)

- $R^2 > 0.2$ coloured:
- + correlation RED
- correlation **BLUE**

From Nickus & Thies (2004)

• Winter (Dec to Mar)

- -No significant signal of NAO in LST
- -Weak correlation of distinct weather patterns with LST
- -No correlation at Piburger See due to ice cover
- Summer (May to Oct)

-Significant correlation between weather patterns (North and South) and LST (p < 0.001)

Northerly vs. LST

Coefficient of determination (r²%)

Deep water temperatures

From Dokulil et al.(2006)

Deep water temperatures

Increase in deep water temperature related to the mean NAO Jan - May

The signal fades with depth

Deep water temperature and oxygen

Lake Constance

Coherence: Cascading effect

From: Dokulil & Teubner (2002) Verh. Int. Verein. Limnol. 28, 1861-1864

TP & Phytoplankton richness

Phytoplankton growth

Balaton

From Padisák (1998)

Cascading effect

Ecosystem level

Summary 1

- * Air temperature will drastically increase during summer
- * Precipitation will decrease \rightarrow wet now, dry in the future
- More run-off during winter
- * Number of extreme events will increase
- * Earlier ice off and shorter duration
- ***** Lake surface temperature (LST) will increase by about 4°C
- Deep water temperatures (DWT) increase by about 0.1-0.2°C per decade (PROBE modeled HCA2 ~ 0.5°C)
- ★ Higher DWT → lower O_2 concentrations, higher P release
- * Length of stratification will increase
- Central Europe affected mainly by the NAO but also from the AO and, in more continental situations by the MO

high NAO

Biological Effects

increased air temperature

higher insolation

lower precipitation

water level decrease

earlier phytoplankton spring peak mismatch between chla and TP later peak of TP reduced species diversity disruption of the linkage between **Phyto- and zooplankton** fish larvae prone to mismatch the dynamics of their food

Selected References

- Dokulil, M.T., Jagsch, A., George, G.D., Anneville, A., Jankowski, T., Wahl, B., Lenhart, B., Blenckner, T. & Teubner, K., 2006. Twenty years of spatially coherent deep-water warming in lakes across Europe related to the North Atlantic Oscillation, *Limnology & Oceanography* 51, 2787-2793.
- Dokulil, M.T., Teubner, K., & Jagsch, A., 2006. Climate change affecting hypolimnetic water temperatures in deep alpine lakes. *Verh. Internat. Verein. Limnol.* 29, 1285-1288.
- Dokulil, M.T. & Teubner, K., 2005. The global warming versus re-oligotrophication controversy in lakes: Can effects on phytoplankton be disentangled? *Phycologia* 44 (Suppl.), 28-29.
- Dokulil, M.T. & Teubner, K., 2003. Klimaeinflüsse auf Seen in Europa (CLIME). Österreichs Fischerei 56, 176-180.
- Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. *Climatic Change* 57, 203-225.
- Livingstone, D. M. & Dokulil, M. T., 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. *Limnology & Oceanography* 46, 1220-1227.
- Nickus, U. & Thies, H., 2004. Climate signals in alpine lakes from large scale North Atlantic Oscillation to regional weather patterns. *Poster, SIL Conference, Lahti.*
- Nickus, U., Thies, H., Pierson, D., Schneiderman, E., Moore, K. & Samuelsson, P., 2005. Lake watershed modelling in the Austrian Alps under present and predicted future climate. *Poster, Climate change & Mountains Conference, Perth.*
- Straile, D., 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. *Oecologia* 122, 44-50.
- Straile, D., Jöhnk, K. & Rossknecht, H., 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. *Limnology & Oceanography* 48, 1432-1438.
- Teubner, K., Tolotti, M., Greisberger, S., Morscheid, H., Dokulil, M.T. & Kucklentz, V. 2006. Steady state of phytoplankton and implications for climatic changes in a deep pre-alpine lake: epilimnetic versus metalimnetic assemblages. *Verh. Internat. Verein. Limnol.* 29, 1688-1692.